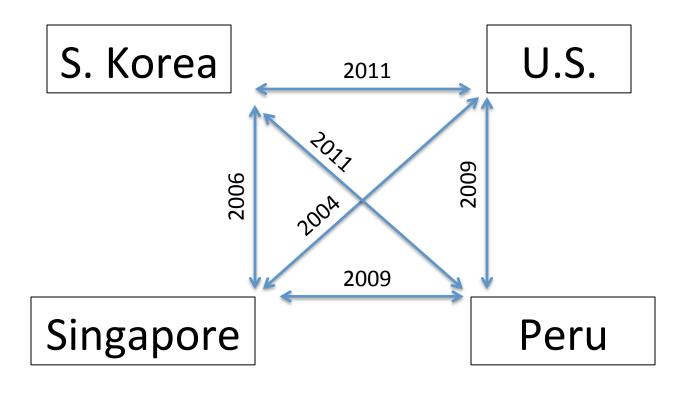
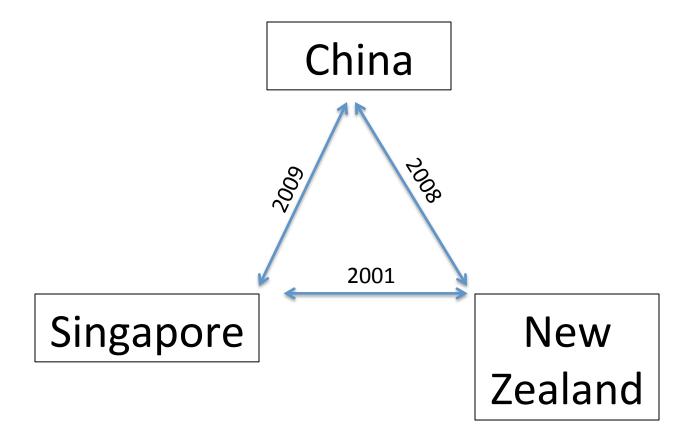
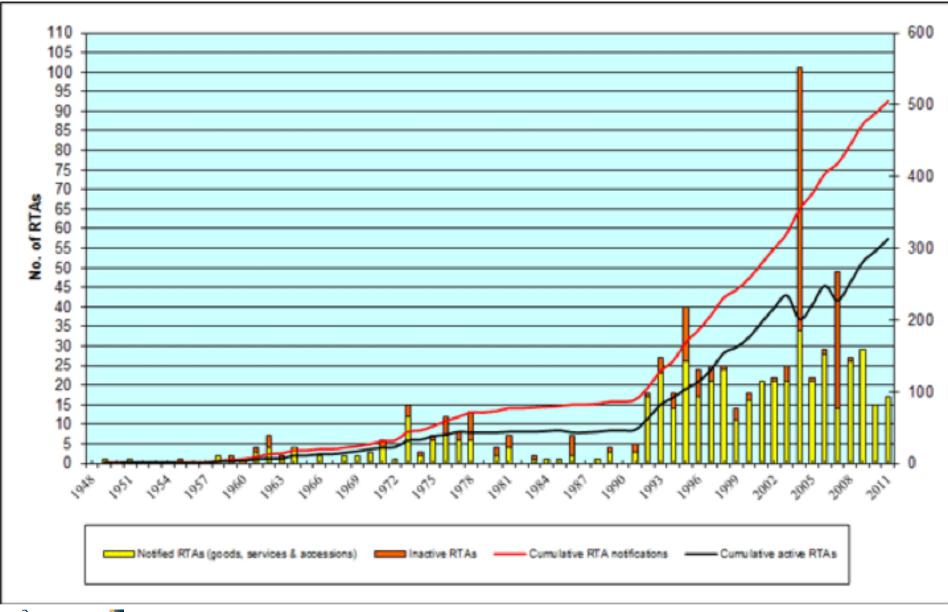


Rue the ROOs: Rules of Origin and the Gains (or Losses) from Trade Agreements


Alan V. Deardorff University of Michigan


The Issue

- Can the proliferation of FTAs be harmful?
- Trade diversion suggests that
 - Individual FTAs could lower world welfare,
 - But if FTAs became ubiquitous, that would not happen.
 - If every country were to have an FTA with every other country, then there would be no trade diversion.
 - Examples:
 - US-Singapore 2004
 - Singapore-Korea 2006
 - US-Peru 2009
 - Singapore-Peru 2009
 - Korea-Peru 2011
 - US-Korea 2011



The Issue

- But that is accurate only for <u>final goods</u>
- I will argue, via simple theoretical examples, that the presence of binding rules of origin (ROOs), in a world of traded intermediate inputs...
 - <u>Can</u> increase protection on intermediate inputs above even the tariffs on final goods.
 - Will reduce world welfare below that of global free trade, even if every country has an FTA with every other country.
 - May even reduce every country's welfare below what it would have achieved with no FTAs at all and positive tariffs.

That is: All FTAs can be worse than No FTAs!

Rules of Origin

- Why an FTA must have ROOs
 - Countries' external tariffs differ
 - Without ROOs, goods will enter through the lowesttariff country
- ROOs specify
 - Requirements for goods to be considered as "originating" either in a country or in an FTA
 - Only trade satisfying the ROO gets a zero tariff

Rules of Origin

- Types of ROOs
 - Substantial transformation
 - Change of "tariff heading"
 - The fewer the digits, the more restrictive.
 - Regional value added
 - Minimum % from inside
 - Maximum % from outside
 - Technical rules
 - E.g., "yarn forward" for textiles in NAFTA

Rules of Origin

- Originating where? The issue of "cumulation"
 - Bilateral cumulation: Inputs only within the FTA count, regardless of other existing FTAs
 - Diagonal cumulation: Inputs from selected other countries count (such as other FTA partners)
 - Full cumulation: Once a good satisfies a ROO, its full value is counted as originating
- In practice, many FTAs (and all involving the U.S.) use <u>bilateral</u> cumulation
 - (Most restrictive)

Why ROOs matter

- Some trade does not qualify, so tariffs remain in effect.
- Worse: Some producers will alter their choice of inputs in order to satisfy ROOs. This raises costs
- Examples will illustrate both

Why ROOs matter

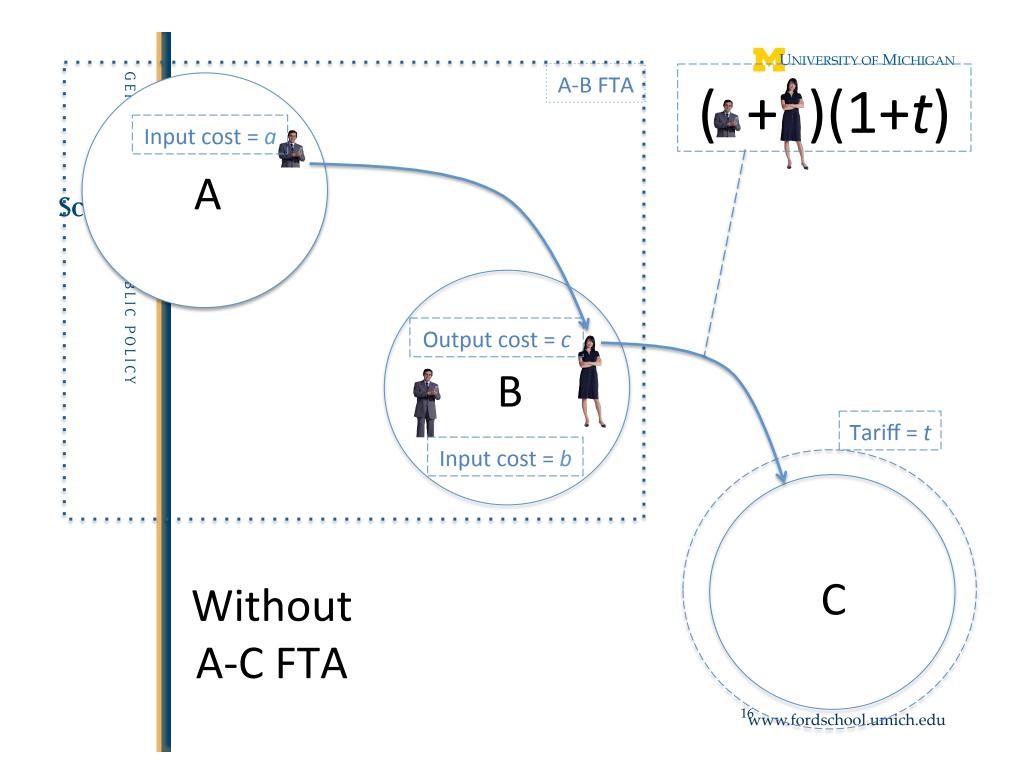
- Outline:
 - Partial equilibrium model of a single input & output
 - General equilibrium example
 - Variations on the general equilibrium example

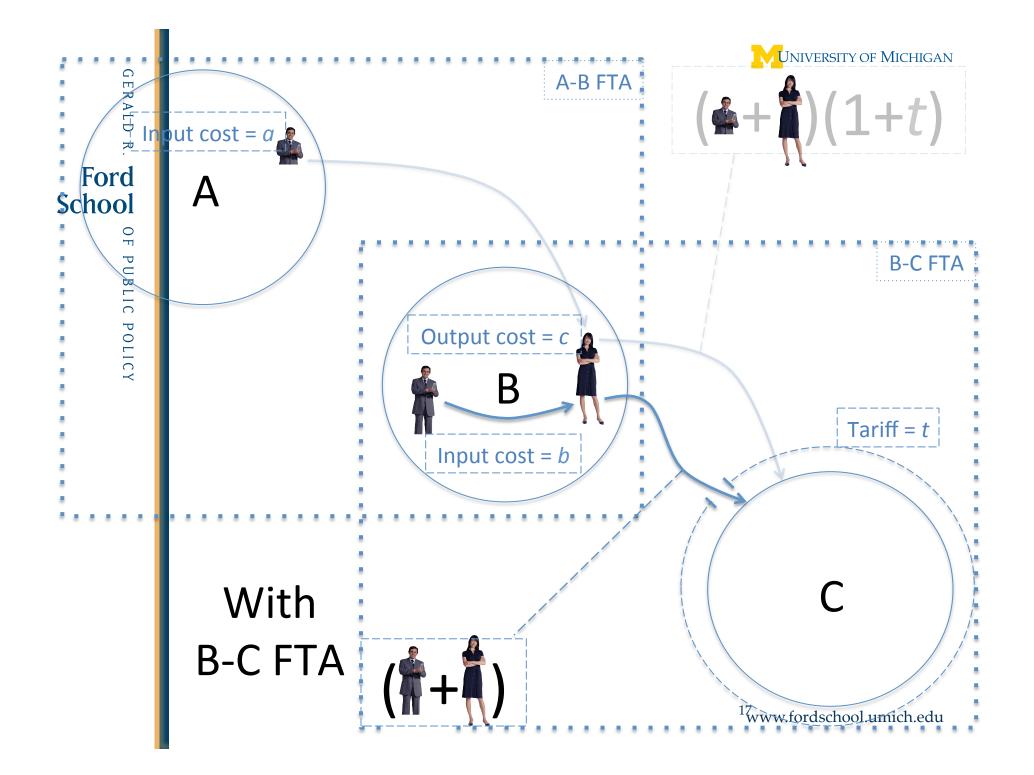
Why ROOs add protection

- Tariff triggered by violation of a ROO
 - applies to the full value of the final good,
 - rather than just the cost of the imported input
- Thus the \$ cost of that violation,
 - measured as a % of the cost of the input,
 - is larger than the tariff itself.

Why ROOs add protection

- Thus a ROO is like increasing the tariff on the input.
 - But its *ad valorem* effect on the input is larger than the tariff on the output.
 - ROOs, when binding, therefore <u>magnify</u> effects of existing tariffs on input trade.
- A partial-equilibrium example illustrates this.




Example 1 (Partial equil.)

- Suppose country B imports input from A to produce final product (output) to sell to C
 - Initially, C has tariff *t* on imports
 - B has zero tariff on input, perhaps due to FTA with A
 - The input costs b in B, and a in A, with b>a
 - Output costs c plus cost of the input

- Thus, producers in B have choice of costs:
 - (a + c) with input imported from A
 - (b + c) with input produced at home
 - Assume (b + c) > (a + c)
 - Without B-C FTA, output sells in C for
 - (1+t)(a+c)
 - With B-C FTA, output sells in C for
 - (*b*+*c*) if sourced from B
 - (1+t)(a+c) if sourced from A
 - B will source from B if (b+c)<(1+t)(a+c)

- With B-C FTA and binding ROO,
 - If (b+c) < (1+t)(a+c), then producer sources in B
- Define Input Protection (IP):
 - IP, due to ROO, is maximum by which *b* can exceed *a* and still be sourced in B:
 - IP = $\max\{(b-a)/a \mid (b+c) \le (1+t)(a+c)\}$
 - $b^{max} + c = (1+t)(a+c)$
 - IP = $(b^{max}-a)/a = [(1+t)(a+c)-c-a]/a = t(a+c)/a$

•
$$\Rightarrow$$
 IP = $t + t(c/a)$

 \triangleright Note: IP > t

- IP = = t + t(c/a)
- Thus the equivalent *ad valorem* protection provided by a binding ROO to an input is <u>larger</u> than the tariff in the FTA partner country on the output.
- e.g.,
 - if input is half the value of output, c=a & IP = 2t
 - If input is 1/x the value of output, IP = xt

- Result: Input protection provided by ROO is larger the smaller is the input's share in value of final output.
- Caveat: This assumes that ROO is binding regardless of that share.
 - That is often not the case: ROOs bind only beyond some fraction of value added.
 - But not all ROOs take that form.

- Conclusion from Example 1
 - FTAs with ROOs can raise protection on inputs
 - But of course they reduce protection on outputs
 - So can they be, on net, harmful?
 - For that we turn to a different example, in general equilibrium

Example 2. (General equilibrium)

- 3 countries, each with same amount of labor
- 3 industries (but 6 goods)
- Goods demanded in fixed proportions (X=Y=Z)
- Each industry has separate input & output
- Constant labor requirements (a la Ricardo)

Country A			Country B				Country C				
	In	Out	Tot		In	Out	Tot		In	Out	Tot
X	1	2		X	3	1		X	2	3	
Y	2	3		Y	1	2		Y	3	1	
Z	3	1		Z	2	3		Z	1	2	

Example 2. (General equilibrium)

- 3 countries, each with same amount of labor
- 3 industries (but 6 goods)
- Goods demanded in fixed proportions (X=Y=Z)
- Each industry has separate input & output
- Constant labor requirements (a la Ricardo)

Country A			Country B				Country C				
	In	Out	Tot		In	Out	Tot		In	Out	Tot
X	1	2		X	3	1		X	2	3	
Y	2	3		Y	1	2		Y	3	1	
Z	3	1		Z	2	3		Z	1	2	

Cost of X=Y=Z=1							
Autarky	12						

Country A			Country B				Country C				
	In	Out	Tot		In	Out	Tot		In	Out	Tot
X	1	2	3	X	3	1	4	X	2	3	5
Y	2	3	5	Y	1	2	3	Y	3	1	4
Z	3	1	4	Z	2	3	5	Z	1	2	3

- Comparative advantage if "fragmentation" not possible
 - input and output must be produced together,

Cost of X=Y=Z=1								
Autarky	12							
FT, no frag	9							

Country A			Country B				Country (C	
	In	Out	Tot		In	Out	Tot		In	Out	Tot
X	1	2	3	X	3	1	4	X	2	3	5
Y	2	3	5	Y	1	2	3	Y	3	1	4
Z	3	1	4	Z	2	3	5	Z	1	2	3

 Comparative advantage if fragmentation <u>is</u> possible and there is multilateral free trade

Cost of X=Y=Z=1								
Autarky 12								
FT, no frag	9							
FT, frag	6							

Trade Flows: Inputs

Country A			Country B				Country C				
	In	Out	Tot		In	Out	Tot		In	Out	Tot
X	1	2	3	X	3,	1	4	X	2	3	5
Y	2	3	5	Y	1	2	3	Y	3	1	4
Z	3	1	4	Z	2	3	5	Z	1	2	3

 Comparative advantage if fragmentation <u>is</u> possible and there is multilateral free trade

Cost of X=Y=Z=1							
Autarky	12						
FT, no frag	9						
FT, frag	6						

	Country A			Country B					Country C			
	In	Out	Tot		In	Out	Tot			In	Out	Tot
X	1	2	3	X	3,	1	4		X	2	3	5
Y	2	3	5	Y	1	2	3		Y	3,	1	4
Z	3	1	4	Z	2	3	5		Z	1	2	3

 Comparative advantage if fragmentation <u>is possible</u> and there is multilateral free trade

Cost of X=Y=Z=1							
Autarky	12						
FT, no frag	9						
FT, frag	6						

	Country A			Country B				Country C			
	In	Out	Tot		In	Out	Tot		In	Out	Tot
X	1	2	3	X	3,	1	4	X	2	3	5
Y	2	3	5	Y	1	2	3	Y	3,	1	4
Z	3	1	4	Z	2	3	5	Z	1	2	3

- But note that some of these exports (in red) use inputs from a third country.
- They may not satisfy ROOs, once FTAs exist

	Country A					Cou	intry	В	Country C				
	In	Out	Tot			In	Out	Tot		In	Out	Tot	
X	1	2	3		X	3,	1	4	X	2	3	5	
Y	2	3	5		Y	1	2	3	Y	3,	1	4	
Z	3	1	4		Z	2	3	5	Z	1	2	3	

Note: Even with ad valorem tariff, t, on all trade, if t < ~30%, result is same as with Free Trade (FT), since t is less than cost advantage

Cost of $X=Y=Z$	Z=1
Autarky	12
FT, no frag	9
FT, frag	6
<i>t</i> <30%, frag	6

• E.g., B's price of X to A: 1.3(1+1.3(1)) = 2.99 < 3

²⁹www.fordschool.umich.edu

Trade Flows:

	Country A					Country B					Country C				
	In	Out	Tot			In	Out	Tot			In	Out	Tot		
X	1	2	3		X	3	1	4		X	2	3	5		
Y	2	3	5		Y	1	2	3		Y	3	1	4		
Z	3	1	4		Z	2	3	5		Z	1	2	3		

Now suppose:

- 3 bilateral FTAs
- ROOs inhibit output-trades shown by red arrows
 - How? Depends on tariffs & ROOs.
 - ROO content requirement > 50% and t > 50%
 - ROO > 50% since $In_A/P_X(In_A) = 50\%$
 - t > 50% raises $P_X(In_A) > 3 = P_X(In_C)$

	Country A					Country B					Country C				
	In	Out	Tot			In	Out	Tot			In	Out	Tot		
X	1	2	3		X	3	1	4		X	2	3	5		
Y	2	3	5		Y	1	2	3		Y	3,	1	4		
Z	3	1	4		Z	2	3	5		Z	1	2	3		

- Those trades will instead be sourced within FTAs
- Cost rises by 1 unit; world loses.
- Cost for 1-unit bundle of X, Y,
 & Z rises 6→7
- Loss of GDP due to FTAs, compared to free trade: 1/6

Cost of X=Y=Z=1							
Autarky	12						
FT, no frag	9						
FT, frag	6						
<i>t</i> <30%, frag	6						
ROOs	7						

³¹www.fordschool.umich.edu

Implication (not surprising)

• ROOs can reduce the gains from ubiquitous FTAs below global free trade.

Implication?

- Question: Can ROOs actually cause the <u>net</u> welfare effect of FTAs to be negative (compared to positive tariffs and no FTAs)?
 - In this example, No.
 - Needed t < 30% to get free-trade welfare
 - Needed *t* > 50% to induce higher-cost sourcing
 - But with different numbers, Yes.

Example 3.

	Cou	ıntry	A		Country B					Country C			
	In	Out	Tot			In	Out	Tot			In	Out	Tot
X	10	30	40		X	20	10	30		X	15	40	55
Y	15	40	55		Y	10	30	40		Y	20,	10	30
Z	20	10	_ 30		Z	15	40	55		Z	10	30	40

Numbers here are a different, but patterns of trade are the same.

- Tariff between 25% and 33% yields result
- E.g., *t*=30%

Cost of X=Y=	Z=1
Autarky	125
FT, no frag	90
FT, frag	60
<i>t</i> <33%, frag	60
ROOs, <i>t</i> >25%	65

³⁴www.fordschool.umich.edu

Example 3.

	Country A					Country B					Country C			
	In	Out	Tot			In	Out	Tot			In	Out	Tot	
X	10	30	40		X	20	10	30		X	15	40	55	
Y	15	40	55		Y	10	30	40		Y	20,	10	30	
Z	20	10	30		Z	15	40	55		Z	10	30	40	

Check that t=30% works:

(Check for X only; Y and Z are symmetric)

- Without FTAs
 - B buys X_{IN} for 1.3(10) = 13
 - B's cost of X = 13+10 = 23
 - A&C buy X from B for
 1.3(23) = 29.9 < 40, 55
 (A's, C's cost from self)

- With FTAs
 - If B buys X_{IN} from A for 10
 - B's cost of X = 10+10 = 20
 - If C buys X from B, it pays
 1.3(20) = 26 > 25

(B's cost with X_{IN} from C)

35
www.fordschool.umich.edu

Example 3.

	Cou	ıntry	A		Country B					Country C			
	In	Out	Tot			In	Out	Tot			In	Out	Tot
X	10	30	40		X	20	10	30		X	15	40	55
Y	15	40	55		Y	10	30	40		Y	20,	10	30
Z	20	10	_ 30		Z	15	40	55		Z	10	30	40

X_{IN} from A

- Result of Example 3:
- With tariffs on all trade of 30%, consumption bundle requires 5/60 = ~8% more labor with FTAs than without.

Cost of X=Y=	Z=1
Autarky	125
FT, no frag	90
FT, frag	60
<i>t</i> <33%, frag	60
ROOs, <i>t</i> >25%	65

³⁶www.fordschool.umich.edu

Implication (surprising?)

 ROOs actually <u>can</u> cause the net welfare effect of ubiquitous FTAs to be negative for all countries, compared to no FTAs and positive tariffs.

Are ROOs better than this, or worse?

- Better?
 - My examples all assumed that producers moved all inputs into the FTA.
 - If they only move just enough to satisfy a ROO, then harm will be less.

Are ROOs better than this, or worse?

- Worse? I had
 - Only two stages of production: input and output
 - Only three goods and countries
- Examples in the paper show that cost rises with
 - more stages of production, and
 - more than three goods and countries

Figure 4 An example with 3 stages of production

5		Case 2													
		Coun	try A			Country B						Country C			
		S1	S2	S3			S1	S2	S3			S1	S2	S3	
	X	1	2	3		X	3	1	2		X	2	3	1	
	Y	2	3	1		Y	1	2	3		Y	3	1	2	
	Z	3	1	2		Z	2	3	1		Z	1	2	3	

• Cost rises from 9 to 11 (22%)

Figure 5 A 4-good, 4-country Example

5	Case 2														
	Co	untry	Α		Co	ountry	' B		Co	ountry	⁷ C		Country		' D
		In	Out			In	Out			In	Out			In	Out
	W	1	2		W	4	1		W	3	4		W	2	3
	X	2	3		X	1	2		X	4	1		X	3	4
	Y	3	4		Y	2	3		Y	1	2		Y	4	1
	Z	4	1		Z	3	4		Z	2	3		Z	1	2

• Cost rises from 8 to 11 (38%)

What to Do?

- First best: Multilateral free trade (of course)
- Second best: greater cumulation
 - Specify ROOs so that inputs originating in any FTA partner qualify under other FTAs
- Third best: Permit within-FTA tariffs only on portion not originating, not on full value

What to Do?

- Is there hope?
 - EU seems to use more cumulation than the US
 - The proposed Transpacific Partnership (TPP) is (or was) intended to include such cumulation
 - Word on the trade street, though, is that the US won't have it.

Conclusion

- The world could
 - Choke on spaghetti;
 - Or at least get indigestion.